
Digital Object Identifier (DOI) 10.1140/epjc/s2005-02381-y
Eur. Phys. J. C 44, 489–503 (2005) THE EUROPEAN

PHYSICAL JOURNAL C

Gauge invariance, infrared/collinear singularities
and tree level matrix element for e+e− → νeν̄eγγ

Z. Wa̧sa

Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Cracow, Poland

Received: 24 April 2005 / Revised version: 22 July 2005 /
Published online: 11 October 2005 – c© Springer-Verlag / Società Italiana di Fisica 2005

Abstract. One of the necessary steps in constructing a high-precision option of KKMC, a Monte Carlo
program for the high-precision simulation of fermion pair production at LEP and Linear Collider energies,
was to make a careful study of the appropriate matrix elements calculated from QED and the complete
standard model. In particular, the installation of the double bremsstrahlung matrix element for the process
e+e− → νeν̄e into the scheme of coherent exclusive exponentiation (CEEX) was necessary. In the CEEX
scheme one has to define an extrapolation and/or reduction procedure to enable the use of the matrix
elements for kinematical configurations with a large number of outgoing particles. The process under
study is particularly interesting because of the gauge cancellation of contributions for photon emission
from incoming fermion lines and t-channel W . The QED U(1) gauge properties require terms of the triple
and quartic gauge couplings to be taken into consideration as well. A natural separation of the complete
amplitude into gauge invariant parts was found and is among the main results of the paper. Each part has
a well defined physical interpretation, which after partial integration over phase space provides infrared
singular, leading-log, next-to-leading-log, and other terms. Contributions related to the triple and quartic
gauge coupling of W (extracted with the help of an expansion around the contact W -interaction) have been
ordered as well. The separation can be of broader interest; it originates from the rigorous calculation of
matrix elements; it visualizes, in the language of spin amplitudes, the properties of factorization necessary
for the common multi-process picture. For example, the multiple photon algorithm of PHOTOS, based on
the parton shower-like approach, profits from similar considerations. These somewhat speculative aspects
of the calculation will be mentioned in the paper as well.

1 Introduction

Higher-order radiative corrections are usually necessary to
obtain high-precision results for phenomenologically im-
portant quantities from the standard model. The tech-
niques of direct calculations lead to expressions of hundreds,
thousands, or even millions of terms. These expressions are
difficult to control analytically and/or numerically. This is
worrisome, because to obtain phenomenologically sound
results third-order effects are mandatory; see e.g. [1]. This
is clearly outside the reach of presently available methods
of direct perturbative calculations. There is no doubt that
resummation of at least some contributions from orders
higher than the second is necessary.

In the case of electroweak processes at LEP, techniques
basedon the exclusive exponentiation ofQEDeffects turned
out to be powerful and enabled high-precision predictions
for a wide range of processes, such as Bhabha scattering,
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the production of heavy bosons, W or Z, and lepton pairs.
The underlying method, originating from the pioneering
work of Yennie, Frautschi and Suura [2], turned out to be
realizable in practice [3–7] thanks to accumulated experi-
ence and ever-increasing computer power.

One of the necessary elements in the approach based
on exponentiation is a rigorous study of the matrix ele-
ments obtained from perturbative calculation. In fact it
is not enough to calculate predictions at the highest pos-
sible order of the perturbation expansion, but it is also
necessary to carefully separate results into infrared singu-
lar and remaining finite parts. Thanks to the properties
of QED, each order singular and leading of terms can be
obtained without explicit perturbative calculations. These
leading and universal parts of the amplitudes can also be
combined with the phase space into the module of the low
level Monte Carlo generator (or in general, into a multi-
dimensional distribution), which can be understood as the
lowest order of an improved perturbative expansion. Later,
finite parts of the matrix elements can be added order-by-
order. In the case of Monte Carlo algorithms, this can be
done with the help of a correcting weight, which can be
shown to be positive and bounded from above. Details of
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such a scheme can be found in [7, 8]. It improves signifi-
cantly the convergence of the perturbative expansion: final
states with an arbitrary number of photons are present al-
ready at the lowest level of the expansion. This allows for
predictions for realistic experimental cut-offs. The solution
based on separation at the amplitude level is specially use-
ful, because the implementation of interference is easy and
convergence of the expansion is particularly fast. This un-
derlying exponentiation scheme is called coherent exclusive
exponentiation (CEEX).

In the case of exponentiation, configurations with mul-
tiple real photons are present and it may happen that for a
particular event there are more explicit photons in the final
state than in the expression available from the perturbative
expansion. Reduction/extrapolation methods are thus nec-
essary. We will not elaborate on theoretical aspects of this
point here; however, let us stress that if a sufficiently high
order of the perturbation expansion is available, the depen-
dence on the choice of the reduction procedure or extrapo-
lation drops out. Particularly bad choices may, nonetheless,
degrade the convergence of the expansion. Thus, it is im-
portant to provide results of perturbative calculations in
a form as convenient as possible for the extrapolation pro-
cedure. Comparisons of amplitudes calculated at different
orders of the perturbative expansion can also provide a
useful hint.

One of the principal purposes of the present paper is to
provide a missing part of the calculations [7, 8] embodied
in the KKMC Monte Carlo for the fermion pair production
widely used in the interpretation of the LEP data. Some
important theoretical aspects of KKMC specific to the
process e+e− → νeν̄en(γ) were not addressed in [7,8], and
were covered in [9] at first order only. That is why in the
main part of Sect. 2 of the present paper we rely heavily on
conventions introduced in [10], and we will assume that the
reader has a certain level of familiarity with that reference.
The main part of Sect. 2 (starting from (7)) is not essential
for a first reading of our paper, if one is interested in the
general idea only. Section 2.1 provides the most essential
point, also in less hermetic language. On the contrary,
Sect. 4 is oriented mainly to the documentation of KKMC
and may be skipped at a first reading.

We believe that the results presented in our paper may
be of some interest for a wider audience as well. This is
why in the remaining sections of the paper we tend to use
a more universal notation. We simply use the language of
spinors and four-vectors without any specific choices made.
Another reason why the internal structure of amplitudes
for the processes e+e− → νeν̄eγγ and e+e− → νeν̄eγ may
be of more general interest is that it is particularly rich.
Even though all collinear and infrared singular terms have
the structure of pure initial-state radiation, emission from
the t-channel W contributes as well. Thus the pattern of
gauge cancellations is complex; triple and quartic gauge
couplings contribute.

However, let us note that the spin amplitudes for these
processes are well defined within the standard model and
have been known for a long time; see e.g. [11]. We could
profit in our work from the ready-to-use computer codes,

such as [12], available for numerical cross checks of our re-
sults.

Our paper is organized as follows. Section 2 is devoted
to the case of single bremsstrahlung, e+e− → νeν̄eγ; some
basic elements of spin-amplitude techniques useful in the
more complex case of double bremsstrahlung are presented
there as well. In Sect. 3, we provide the main results; in
particular, we explicitly identify the gauge invariant parts
of the amplitudes. We stress points which are useful for
the extrapolation schemes used in the CEEX exponenti-
ation as well. We keep our discussion in as universal a
language as possible, having in mind future applications
in automated spin-amplitude programs. In Sect. 4 we dis-
cuss issues related to the extrapolation procedure in more
detail. Finally, Sect. 5 summarizes the paper.

2 Amplitude for one real photon and notation

Let us start with the well-known and straightforward cal-
culation of O(α) spin amplitude for the e+e− → νeν̄eγ
single-photon bremsstrahlung process; see Fig. 1. We will
recall it here, in order to define the framework for our dis-
cussion. The conventions of [8–10] are used. Let us recall
here only the most important notation. The four-momenta
pa, pb, pc, pd, k1 denote respectively the momenta of in-
coming electron, positron, outgoing neutrino, antineutrino
and photon. The indices for the spin states for the fermions
are denoted respectively λa, λb, λc, λd and for the photon
σ1. The photon polarization vector is denoted εσ1 . The
gauge transformation in our case reduces to the replace-
ment εσ1 → εσ1 +x k1 (with arbitrary coefficient x), there
will be no external boson lines, and incoming fermions lead
to trivial phases only. With these notations the first-order
matrix element,1 obtained from the Feynman diagrams
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Fig. 1. The Feynman diagrams for e+e− → ν̄eνe γ

1 M1{I}
(

p
λ

k1
σ1

)
: the subscripts 1 and {I} denote, respectively,

that the amplitudes are of the first order and are included as
part of the initial-state bremsstrahlung. This spurious notation
is convenient for the reader interested in [10].
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depicted in Fig. 1, can be written in a rather straightfor-
ward way:

M1{I}
(p
λ

k1
σ1

)

= eQev̄(pb, λb)Mbd
{I}

�pa + m − �k1

−2k1pa
�ε�

σ1
(k1)u(pa, λa)

+eQev̄(pb, λb) �ε�
σ1

(k1)
−�pb + m+ �k1

−2k1pb
Mac

{I}u(pa, λa)

+ev̄(pb, λb)M
bd,ac
{I} u(pa, λa)

× ε�
σ1

(k1) · (pc − pa + pb − pd)
(ta − M2

W )(tb − M2
W )

+e
v̄(pb, λb)gWeν

λb,λd
�ε�

σ1
(k1)v(pd, λd)

(ta − M2
W )(tb − M2

W )

×ū(pc, λc)gWeν
λc,λa

�k1u(pa, λa)

−e
v̄(pb, λb)gWeν

λb,λd
�k1v(pd, λd)

(ta − M2
W )(tb − M2

W )

×ū(pc, λc)gWeν
λc,λa

�ε�
σ1

(k1)u(pa, λa), (1)

or, equivalently,

M1{I}
(p
λ

k1
σ1

)
= M0 + M1 + M2 + M3,

M0 = eQe

×v̄(pb, λb)Mbd
{I}

�pa + m − �k1

−2k1pa
�ε�

σ1
(k1)u(pa, λa)

+eQev̄(pb, λb) �ε�
σ1

(k1)
−�pb + m+ �k1

−2k1pb
Mac

{I}u(pa, λa),

M1 = M1′
+ M1′′

,

M1′
= +ev̄(pb, λb)M

bd,ac
{I} u(pa, λa)ε�

σ1
(k1) · (pc − pa)

× 1
ta − M2

W

1
tb − M2

W

,

M1′′
= +ev̄(pb, λb)M

bd,ac
{I} u(pa, λa)ε�

σ1
(k1) · (pb − pd)

× 1
ta − M2

W

1
tb − M2

W

,

M2 = +ev̄(pb, λb)gWeν
λb,λd

�ε�
σ1

(k1)v(pd, λd)

×ū(pc, λc)gWeν
λc,λa

�k1u(pa, λa)
1

ta − M2
W

1
tb − M2

W

,

M3 = −ev̄(pb, λb)gWeν
λb,λd

�k1v(pd, λd) (2)

×ū(pc, λc)gWeν
λc,λa

�ε�
σ1

(k1)u(pa, λa)
1

ta − M2
W

1
tb − M2

W

.

Part of the amplitude consisting of bosonic couplings (the
gZ,f

λ denote the coupling constant of Z to fermion f of
handedness λ, in units of electric charge), spinors for final-
state fermions and boson propagators reads

Mxy
{I} = ie2(RZ +RW ) = ie2

∑
B=W,Z

Πµν
B (X)GB

e,µ(GB
f,ν)[cd]

(3)

with

GB
e,µ = γµ

∑
λ=±

1
2

(1 + λγ5)g
B,e
λ ,

(GB
f,ν)[cd] = ū(pc, λc)GB

f,νv(pd, λd),

Πµν
B=Z(X) =

gµν

X2 − M2
Z + iΓZX2/MZ

,

Πµν
B=W (X) =

gµν

t − M2
W

. (4)

The final-state spinors are explicitly included, and a
Fierz transformation is applied for the part of W exchange.
The W coupling constant reads

gWeν
λc,λa

=
1√

2 sin θW
δλc

λa
δλc
+ . (5)

Only for the W contribution, the superscripts xy in M{I}
have a meaning; they define the momentum transfer in
the W propagator Πµν

W (X): for xy = ac the transfer2 is
ta = (pa − pc)2, and for bd it is tb = (pb − pd)2. If both are
explicitly marked, then the expression

Mbd,ac
{I} = ie2GW

e,µ(GW,µ
ν )[cd] (6)

is used. For those parts of formula (2) theW propagators are
explicitly given. The symbols RZ and RW will be defined
later; see (25) and (28).

Let us rewrite expression (2). It is straightforward to
notice that the first term M0 can be split into soft IR parts
proportional to (�p ± m) and non-IR parts proportional to
�k1. The non-IR parts are individually gauge invariant by
construction. The soft part of M0, with Z couplings only,
is gauge invariant as well.

Employing the completeness relations of (A14) from [8]
we obtain the following form3 of (2):

M1{I}
(p
λ

k1
σ1

)

= − eQe

2k1pa

∑
ρa

B
[pb

λb

pa
ρa

]
[cd]U

[
pa
ρa

k1
σ1

pa

λa

]

+
eQe

2k1pb

∑
ρb

V
[pb

λb

k1
σ1

pb
ρb

]
B

[
pb
ρb

pa

λa

]
[cd]

+
eQe

2k1pa

∑
ρ

B
[pb

λb

k1
ρ

]
[cd]U

[
k1
ρ

k1
σ1

pa

λa

]

− eQe

2k1pb

∑
ρ

V
[pb

λb

k1
σ1

k1
ρ

]
B

[
k1
ρ

pa

λa

]
[cd]

2 Transfers can be expressed also as ta = (pb − k1 − pd)2

and tb = (pa − k1 − pc)2, this make difference if extrapolation
procedures are used for the configurations off mass shell where
pa + pb �= pc + pd + k1, otherwise M1′

= M1′′
of course.

3 Note that the differences in fonts: M, M and M are signif-
icant, the symbols corresponding respectively to complete spin
amplitude, additive part of the amplitude and finally the part
describing the hard interaction alone.
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+M1′
+ M1′′

+ M2 + M3. (7)

The terms M1′
to M3 correspond to the last three lines4

of (1). These contributions are infrared-finite (IR-finite).
In the next step let us remove the sum in the first

two terms thanks to the diagonality of U and V [8]. The
matrices B are also defined in this reference. We obtain

M1{I}
(p
λ

k1
σ1

)
= s{I}

σ1
(k1)B̂ [pλ] +

(
rB′
{I} + M1′)

+
(
rB′
{I} + M1′′)

+ rA′
{I} + rA′′

{I}

+
(M2 + M3) , (8)

rB′
{I}

(p
λ

k1
σ1

)
= − eQe

2k1pa

∑
ρ

B̄
[pb

λb

pa
ρa

]
[cd]U

[
pa
ρa

k1
σ1

pa

λa

]
,

rB′′
{I}

(p
λ

k1
σ1

)
= +

eQe

2k1pb

∑
ρ

V
[pb

λb

k1
σ1

pb
ρb

]
B̄

[
pb
ρb

pa

λa

]
[cd],

rA′
{I}

(p
λ

k1
σ1

)
= +

eQe

2k1pa

∑
ρ

B
[pb

λb

k1
ρ

]
[cd]U

[
k1
ρ

k1
σ1

pa

λa

]
,

rA′′
{I}

(p
λ

k1
σ1

)
= − eQe

2k1pb

∑
ρ

V
[pb

λb

k1
σ1

k1
ρ

]
B

[
k1
ρ

pa

λa

]
[cd],

s{I}
σ1

(k1) = −eQe
bσ1(k1, pa)

2k1pa
+ eQe

bσ1(k1, pb)
2k1pb

. (9)

The soft part is now clearly separated from the remain-
ing non-IR part, used in the CEEX exponentiation for
the construction of O(α) corrections. We have ordered the
expression, with the help of an expansion similar to the
contact interaction for the W propagator as well. In B̂ [pλ]
we use an auxiliary fixed transfer t0, which is independent
of the place where the photon is attached to the fermion
line. In fact t0 is arbitrary and the choice t0 = 0 could be
used as well5. With the help of B̄ we provide the residual
contribution calculated as the difference of the expression
calculated with the true t-transfers (ta or tb) and the auxil-
iary t0 one. Note that B = B̂+B̄. Each of the contributions
to the sum given in the first equation of (8) is independently
gauge invariant.

We can see [9] that it was possible to separate the com-
plete spin amplitude for the process e+e− → ν̄eνeγ into six
individually QED gauge invariant parts. This conclusion
is rather straightforward to check, replacing the photon
polarization vector with its four-momentum, in every ele-
ment of the master sum in (8). Also, each element has a
rather well defined physical interpretation. It is also easy

4 The term M1 +M2 +M3 originates from the WWγ vertex

−ie [gµν(p − q)ρ + gνρ(q − r)µ + gµρ(r − p)ν ]

where all momenta are outgoing, and indices on outgoing lines
are paired with the momenta pµ, qν rρ; M1 originates from
the term where gµν connects the e−–νe, e+–ν̄e fermion lines.

5 The choice is nonetheless important from the point of view
of efficiency; it affects the size of the corrections in the CEEX
expansion. The condition that limk1→0 ta/b = t0 is desirable.

to verify that the gauge invariance of each part can be pre-
served in the case of the extrapolation, when the condition
pa +pb = pc +pd +k1 is not valid. Let us elaborate on this
point a bit more.
(1) The first term of the soft photon type s

{I}
σ1 (k1)B̂ [pλ] is

gauge invariant thanks to the invariance of the standard
ISR soft factor s

{I}
σ1 (k1). It is also of the universal form,

identical for the diagrams with the s-channel Z exchange
as well as the t-channel W .
(2) The next two terms

(
rB′
{I} + M1′

)
and

(
rB′
{I} + M1′′

)
originate only from diagrams of t-channel W exchange. For
the gauge invariance to hold, the t-channel transfers have
to be ta = (pa −pc)2, tb = (pa −k1 −pc)2 for the first term
(and ta = (pb − k1 − pd)2, tb = (pb − pd)2 for the second
one)6.
(3) The consecutive two terms rA′

{I}
(p
λ

k1
σ1

)
and rA′′

{I}
(p
λ

k1
σ1

)
are again of the same universal form as for any s-channel
process and are gauge invariant by construction. These are
also the terms which lead to leading-log (but not infrared)
singular terms after phase space integration. There the
photon polarization vector and its momentum stand side-
by-side.
(4) Finally, for the last expression

(M2 + M3
)

to be gauge
invariant it is enough that in both terms the choices for ta,
tb are identical; the same reduction procedure7 is used.
(5) Note that the relation of the Born level amplitude in
the contact approximation for W exchange and the com-
plete amplitude for single-photon emission is clearly visible
and enables one to make a physical interpretation of the
expression obtained.

2.1 Simplest case of e+e− → νµν̄µ

Let us finish this section with a discussion of the Z exchange
part of the amplitude (2) in the simple language of spinors
and four-vectors. This part of the amplitude (and the lan-
guage) is important because it will define the framework
for our main results collected in Sect. 3. We have

MZ
1{I}

(p
λ

k1
σ1

)
= eQe (10)

×v̄(pb, λb)M{I}
�pa + m − �k1

−2k1pa
�ε�

σ1
(k1)u(pa, λa)

+eQev̄(pb, λb) �ε�
σ1

(k1)
−�pb + m+ �k1

−2k1pb
M{I}u(pa, λa);

the superscript ac or bd in M{I} can be dropped, because
here M{I} does not depend on the t-dependent W propaga-
tor. For the precise specification of the part of amplitude
for the hard interaction M{I} = RZ , see (25), later in
the text.

6 It is interesting to realize that only part of the diagram is
involved in the cancellation; for example emission from the up-
per fermion and boson lines only. This observation will become
useful in case of double bremsstrahlung amplitudes.

7 Mechanism of gauge cancellation is fulfilled already at the
level of bosonic interaction alone. Also this observation will be
useful in a study of double bremsstrahlung amplitudes.
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The gauge invariance of the two sub-parts proportional
to �k1 is straightforward to see, because the product
�k1 � ε�

σ1
(k1) alone, is gauge invariant. These parts of the

amplitude do not contribute to the infrared singularity;
however, they do contribute to the large logarithm related
to the collinear singularity (once amplitudes are squared
and integrated over the phase space). That is why we will re-
fer to these parts of the amplitude as infrared-finite collinear
singular. The remaining part of the amplitude,

MZ−ir
1{I}

(p
λ

k1
σ1

)
(11)

= eQev̄(pb, λb)Mbd
{I}

�pa + m

−2k1pa
�ε�

σ1
(k1)u(pa, λa)

+eQev̄(pb, λb) �ε�
σ1

(k1)
−�pb + m

−2k1pb
Mac

{I}u(pa, λa),

factorizes, thanks to the orthogonality for Dirac spinors,

�pa + m =
∑

λ

u(pa, λ)ū(pa, λ)

− �pb + m = −
∑

λ

v(pb, λ)v̄(pb, λ), (12)

into a gauge invariant soft photon factor and a Born am-
plitude:

MZ−ir
1{I}

(p
λ

k1
σ1

)
= s{I}

σ1
(k1)v̄(pb, λb)Mbd

{I}u(pa, λa),

s{I}
σ1

(k1) = +
eQe

−2k1pa
ū(pa, λ) �ε�

σ1
(k1)u(pa, λa)

+
eQe

2k1pb
v̄(pb, λb) �ε�

σ1
(k1)v(pb, λ) (13)

=
−eQe

2k1pa
bσ1(k1, pa)δλλa

+
eQe

2k1pb
bσ1(k1, pb)δλλb

.

The gauge invariance takes place in case of Z exchange
(and also W exchange, if the approximation of a contact
interaction is used) because M{I} = Mbd

{I} = Mac
{I}. Also,

the two parts of s
{I}
σ1 (k1) are diagonal respectively in a pair

of indices λλa(b). The Born level spin amplitude factorizes
out, and the gauge dependent soft factors for the emission
from electron and positron lines can be summed to a gauge
invariant s

{I}
σ1 (k1). For the explicit definition of bσ1(k1, pb),

see e.g. formula (231) of [8]. We will use the factorization of
the soft factors, explained here, later in the paper as well.

Note that in the case of the single-photon Z exchange
amplitude, we have only three gauge invariant parts: an
infrared-singular one and two other ones contributing to
collinear-singular terms (after phase space integration).
The residual terms (contributing only non-enhanced terms
after phase space integration) are absent. Such terms are
present in case of the W exchange.

Finally, let us comment that a similar pattern of ampli-
tude separation into gauge invariant parts can be observed
for W± → lνlγ [13].

3 Double bremsstrahlung

In the present section we will study the amplitudes for the
double bremsstrahlung in e+e− → νeν̄e production pro-
cess. There are two individually gauge invariant groups of
diagrams in this case. The first has Z boson exchange in the
s-channel, and the second one has t-channel W exchange.
Similarly, as in previous section and single bremsstrahlung,
we will check if gauge invariant parts of the complete am-
plitude can be defined. Also we will be interested if this
can be done in a semi-automatic way, directly from the
Feynman rules.

The presentation of the complete amplitudes is cumber-
some because of their length. To avoid lengthy formulae, we
will start with a largely incomplete set of diagrams, which
is nonetheless sufficient to localize some gauge invariant
group of terms. Once localized, it will be hidden under the
symbol (or group of symbols) Lb

a and left behind. To the
remaining gauge dependent part, the contributions from
the next diagrams will be added. Again, a gauge invariant
group of terms will be sought. This procedure will be re-
peated until the complete list of diagrams of our process
is exhausted. The choice for the first diagram in this pro-
cedure is motivated by its particular (unique) form. Later
steps are motivated by the form of the gauge dependent re-
mainder from the previous one8. For short hand notations
we will use extended subscripts and superscripts for Lb

a.
For example, we will use the symbol Lk1,k2

e− (n), to denote
the contribution for the diagram with the first photon of
momentum, k1, and the second one, k2, attached to the
incoming e− line. The number n in brackets (if present)
will denote that it may be only a part of the contribution
from the particular Feynman diagram (or diagrams). A
bar over this number n means that the particular part is
gauge dependent.

Let us start our iteration with diagrams involving the
double fermion propagator, that is, diagrams where two
photons are attached either to an incoming electron or to
an incoming positron. These are the only diagrams with
a k1 · k2 term in the fermion propagators. Our first aim
will be to localize the parts which are gauge invariant by
themselves and include this k1 · k2 term. Let us consider
the eight diagrams with the photon lines attached either
to electron or positron line; see Fig. 2. Explicitly, we will
write down the part of the amplitude corresponding to the
incoming electron line only. The diagrams with Z and W
exchange are quite similar:

Lk1,k2
e− = (eQe)2

×v̄(pb, λb)RB

( �pa + m − �k1 − �k2

−2k1pa − 2k2pa − 2k1k2
�ε�

σ2

× �pa + m − �k1

−2k1pa
�ε�

σ1
u(pa, λa)

+
�pa + m − �k1 − �k2

−2k1pa − 2k2pa − 2k1k2
�ε�

σ1

8 We suspect that the method presented here can be auto-
mated and applied to other processes and at higher orders of
the perturbation expansion as well.
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Fig. 2. Double emission from electron

× �pa + m − �k2

−2k2pa
�ε�

σ2
u(pa, λa)

)
. (14)

Only the expression RB , describing a final-state neutrino
interaction either with Z or W distinguishes the two cases;
it is defined later, in (25) and (28) respectively. We can
separate (14) into the following parts:

Lk1,k2
e− = Lk1,k2

e− (1)+Lk1,k2
e− (2)+Lk1,k2

e− (3̄)+Lk1,k2
e− (4̄), (15)

where

Lk1,k2
e− (1) = (eQe)2

×v̄(pb, λb)RB

( −�k2

−2k1pa − 2k2pa − 2k1k2
�ε�

σ2
(k2)

× −�k1

−2k1pa
�ε�

σ1
(k1)u(pa, λa)

+
−�k1

−2k1pa − 2k2pa − 2k1k2
�ε�

σ1
(k1)

× −�k2

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)
(16)

is gauge invariant by construction, thanks to the terms
�k1 � ε�

σ1
(k1) and �k2 � ε�

σ2
(k2). This is similar to the case of

single bremsstrahlung. The second part,

Lk1,k2
e− (2) = (eQe)2

×v̄(pb, λb)RB

( �pa + m − �k2

−2k1pa − 2k2pa − 2k1k2
�ε�

σ1
(k1)

× −�k2

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

+
−�k2

−2k1pa − 2k2pa − 2k1k2
�ε�

σ1
(k1)

× �pa + m

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

−�k2

(
1

−2k1pa − 2k2pa − 2k1k2
− 1

−2k2pa

)

× �ε�
σ2

(k2)
�pa + m

−2k1pa
�ε�

σ1
(k1)u(pa, λa)

+(�pa + m)

×
(

1
−2k1pa − 2k2pa − 2k1k2

− 1
−2k1pa − 2k2pa

)

× �ε�
σ2

(k2)
�pa + m

−2k1pa
�ε�

σ1
(k1)u(pa, λa)

)
+ (1 ↔ 2), (17)

is also gauge invariant, but it needs to be checked by direct
calculation. This contribution, like the previous one, is free
of an infrared singularity. In the definition of Lk1,k2

e− (2) we
had to introduce a subtraction: the terms proportional to
�k2

(
− 1

−2k2pa

)
and (�pa + m)

(
− 1

−2k1pa−2k2pa

)
. The sub-

tracted terms are added back to (15) as (18) and (19), but
with the opposite signs of course. It is important to realize,
that the form of these subtracted terms is defined uniquely
by the Z exchange part of the amplitude for single-photon
emission9 (see (10)) and by the soft photon factor for the
second photon.

The term Lk1,k2
e− (3̄) equals

Lk1,k2
e− (3̄) = (eQe)2

×v̄(pb, λb)RB

( �pa + m

−2k1pa − 2k2pa
�ε�

σ2
(k2)

× �pa + m

−2k1pa
�ε�

σ1
(k1)u(pa, λa)

+
�pa + m

−2k1pa − 2k2pa
�ε�

σ1
(k1)

�pa + m

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)

= (eQe)2v̄(pb, λb)RB

× �pa + m

−2k2pa
�ε�

σ2
(k2)

�pa + m

−2k1pa
�ε�

σ1
(k1)u(pa, λa), (18)

and the next term Lk1,k2
e− (4̄) is also free of k1k2. Its numer-

ator is linear in the photon momentum:

Lk1,k2
e− (4̄) = (eQe)2

×v̄(pb, λb)RB

( −�k2

−2k2pa
�ε�

σ2
(k2)

× �pa + m

−2k1pa
�ε�

σ1
(k1)u(pa, λa) (19)

+
−�k1

−2k1pa
�ε�

σ1
(k1)

�pa + m

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)
.

The complete contribution from the diagrams of Fig. 2,
formula (15), is not gauge invariant. The last two terms are
gaugedependent, andare also relatively short.Thefirst one,
(18), has the structure of a Born amplitude multiplied by
soft photon factors. The second one, (19), has the structure
of soft photon emission for one of the two photons only;
see the discussion at the end of Sect. 2.

Once we have completed the diagrams with two photon
lines attached to the same fermion line, let us turn to
another group of diagrams, where one of the photons is
attached to an electron and another one to a positron line;
see Fig. 3. Note that for the subgroup of diagrams with Z
boson exchange, these are the last contributing diagrams:

9 The subtraction term for the W exchange differs only by
the replacement RB = RW .
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Fig. 3. Single emission from electron and positron

Lk1,k2
e−,e+ = (eQe)2

×
(

v̄(pb, λb) �ε�
σ2

− �pb + m + �k2

−2k2pb
RB

× �pa + m − �k1

−2k1pa
�ε�

σ1
u(pa, λa)

+v̄(pb, λb) �ε�
σ1

− �pb + m + �k1

−2k1pb
RB

× �pa + m − �k2

−2k2pa
�ε�

σ2
u(pa, λa)

)
. (20)

As in the previous case the expression for Lk1,k2
e−,e+ can

be easily separated into parts:

Lk1,k2
e−,e+ = Lk1,k2

e−,e+(1) + Lk1,k2
e−,e+(2̄) + Lk1,k2

e−,e+(3̄). (21)

Thefirst part,Lk1,k2
e−,e+(1), is gauge invariant by construction.

It is also the only part from this group of diagrams with a
numerator proportional both to the momenta of k1 and k2:

Lk1,k2
e−,e+(1) = (eQe)2

×
(

v̄(pb, λb) �ε�
σ2

(k2)
�k2

−2k2pb
RB

× −�k1

−2k1pa
�ε�

σ1
(k1)u(pa, λa)

+v̄(pb, λb) �ε�
σ1

(k1)
�k1

−2k1pb
RB

× −�k2

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)
. (22)

The second term, Lk1,k2
e−,e+(2̄), has two contributions, numer-

ators linear either in k1 or k2; it reads

Lk1,k2
e−,e+(2̄) = (eQe)2

×
(

v̄(pb, λb) �ε�
σ2

(k2)
− �pb + m

−2k2pb
RB

× −�k1

−2k1pa
�ε�

σ1
(k1)u(pa, λa)

+v̄(pb, λb) �ε�
σ1

(k1)
�k1

−2k1pb
RB

× �pa + m

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

+v̄(pb, λb) �ε�
σ2

(k2)
�k2

−2k2pb
RB

× �pa + m

−2k1pa
�ε�

σ1
(k1)u(pa, λa)

+v̄(pb, λb) �ε�
σ1

(k1)
− �pb + m

−2k1pb
RB

× −�k2

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)
. (23)

Finally the third one, Lk1,k2
e−,e+(3̄), is free of both k1 and k2

in the numerator:

Lk1,k2
e−,e+(3̄) = (eQe)2

×
(

v̄(pb, λb) �ε�
σ2

(k2)
− �pb + m

−2k2pb
RB

× �pa + m

−2k1pa
�ε�

σ1
(k1)u(pa, λa)

+v̄(pb, λb) �ε�
σ1

(k1)
− �pb + m

−2k1pb
RB

× �pa + m

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)
. (24)

To complete the sub-set of diagrams for double brems-
strahlung from the initial state, the contribution of the
double emission from a positron line should be added. We
will omit the explicit formula analogous to (15) here, and
the expressions forLk1,k2

e+ (1),Lk1,k2
e+ (2),Lk1,k2

e+ (3̄),Lk1,k2
e+ (4̄).

They can be obtained from Lk1,k2
e− (1), Lk1,k2

e− (2), Lk1,k2
e− (3̄),

Lk1,k2
e− (4̄) by analogy, or by explicit calculation.

3.1 Diagrams with Z exchange

Before going to the more complex case of W exchange,
where complications due to the t dependence of the W
propagator occur, let us concentrate on Z exchange. The
diagramsdiscussed so far represent then the complete gauge
invariant amplitude for the process e+e− → νµν̄µγγ. In
such a subgroup of diagrams (for the process e+e− →
νeν̄eγγ) the symbol RB=Z always represents

RZ =
(
γµ(v1 + aγ5)

)
αβ

× (
ū(pc, λc)γµ(v1 + aγ5)v(pd, λd)

)
×BWZ((pc + pd)2), (25)

which is a constant algebraic expression, independent of
photon momenta and identical for all diagrams. The Z bo-
son propagator BWZ((pc +pd)2) depends on the invariant
mass of the outgoing neutrinos only. The bi-spinor indices
of γµ and γµγ5 matrices which enter into the matrix prod-
ucts of formulae such as (14) to (24) are explicitly given
and denoted as αβ. The complete amplitude reads

M = Lk1,k2
e− + Lk1,k2

e+ + Lk1,k2
e−,e+

= Lk1,k2
e− (1) + Lk1,k2

e− (2) + Lk1,k2
e− (3̄) + Lk1,k2

e− (4̄)
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+Lk1,k2
e+ (1) + Lk1,k2

e+ (2) + Lk1,k2
e+ (3̄) + Lk1,k2

e+ (4̄)

+Lk1,k2
e−,e+(1) + Lk1,k2

e−,e+(2̄) + Lk1,k2
e−,e+(3̄). (26)

Here Lk1,k2
e− is given by (14) (or by (15) if separated

into parts) and Lk1,k2
e−,e+ by (20) (or (21)). For Lk1,k2

e+ , the

expressions of Lk1,k2
e− can be used with the appropriate

changes of signs, momenta, etc.
The formula for the complete spin amplitude (Z ex-

change only) can be easily re-ordered into consecutive
contributions M1, M2, M3, . . ., each gauge invariant and
each representing an individual L, or group of L’s, in the
square brackets:

M = MZ
2{I}

(p
λ

k1
σ1

k2
σ2

)
= M1 + M2 + M3 + M4 + M5 + M6 + M7

= Lk1,k2
e− (1) + Lk1,k2

e− (2) + Lk1,k2
e+ (1) + Lk1,k2

e+ (2)

+Lk1,k2
e−,e+(1)

+
[
Lk1,k2

e− (4̄) + Lk1,k2
e+ (4̄) + Lk1,k2

e−,e+(2̄)
]

+
[
Lk1,k2

e− (3̄) + Lk1,k2
e+ (3̄) + Lk1,k2

e−,e+(3̄)
]
. (27)

As one can see, the sum of terms M1 to M5, con-
tributing to β2

2 of the CEEX exponentiation scheme (these
terms are not infrared singular at all) is gauge invariant
and clearly separated from the rest. It can be sliced fur-
ther into five parts, each individually gauge invariant. The
last two terms, M6 and M7 correspond respectively to β1

1
and β0

0 (multiplied by one or two soft photon factors) and
can be obtained from a lower order of the perturbation
expansion. It is rather straightforward to see that the term
M7 consists of a Born level amplitude multiplied by soft
factors corresponding to the emission of two photons. The
term M6 consists of products: a soft factor for one of the
photons and β1

1 for the other one; see [8] for definitions.
To see it better, it is convenient to order the expression
accordingly to terms proportional either to �k1 or �k2.

Note also that for each of the parts to be gauge invariant,
it is not necessary that four-momentum conservation is
fulfilled. That is why the separation is easily adaptable
to the extrapolation procedure used in KKMC [7]. Here
we finish our discussion of results for s-channel exchange
of Z. Let us now turn to the contributions related to the
t-channel W exchange.

3.2 Diagrams with W exchange

First, let us note that all formulae presented so far are
valid for the diagrams involving W exchange as well. The
difference is that instead of (25) for RB one should use

RW =
(
γµ(1 − γ5)v(pd, λd)

)
α

× (
ū(pc, λc)γµ(1 − γ5)

)
β

BWW (t). (28)

The spinorial form of this expression is universal, and, as
in the case of Z exchange, the same expression is to be

used in all places. The difference lies in the t dependence
of the W propagator; the transfer will depend on the way
how the photon lines are attached to the fermionic ones.
Nonetheless, in some groups of terms gauge cancellation
occurs in the same way as before. If we recall the part of
the W exchange amplitude, written in analogy to (27) as

MA
W = M1 + M2 + M3 + M4 + M5 + M̄6 + M̄7

= Lk1,k2
e− (1) + Lk1,k2

e− (2) + Lk1,k2
e+ (1) + Lk1,k2

e+ (2)

+Lk1,k2
e−,e+(1)

+
(
Lk1,k2

e− (4̄) + Lk1,k2
e+ (4̄) + Lk1,k2

e−,e+(2̄)
)

+
(
(Lk1,k2

e− (3̄) + Lk1,k2
e+ (3̄) + Lk1,k2

e−,e+(3̄)
)

, (29)

then the parts M1, M2, M3, M4 and M5 remain gauge
invariant. Only the last two terms will need contributions
from diagrams with triple and quartic gauge boson cou-
plings for the gauge invariance to hold. To visualize this
point, the bar sign is now placed over M̄6 and M̄7. Note
that, as already pointed in the previous subsection, these
are the contributions that could be obtained from the re-
sults of the calculation at lower perturbative order if the
complications due to the variation of W exchange transfers
were not taken into account.

Let us continue with the second part of our discus-
sion now. The two (now gauge dependent) contributions
M̄6 and M̄7 will be completed first with diagrams from
the left-hand side of Fig. 4. Note that these diagrams are
the last ones with a photon line attached to an incoming
electron/positron, thus the last ones contributing collinear
and/or soft singularities. The contribution to the scattering
amplitude from these new diagrams reads

Lk1,k2
e−,W = (eQe)2

×BWW

(
(pc + k2 − pa)2

)
×BWW

(
(pc + k2 + k1 − pa)2

)
× (

v̄(pb, λb)(1 − γ5)γµv(pd, λd)

× [gµν(p − q)ρ + gνρ(q − k1)µ + gµρ(k1 − p)ν ]

× (
ε�
σ1

(k1)
)ρ

×ū(pc, λc)(1 − γ5)γν �pa + m − �k2

−2k2pa

× �ε�
σ2

(k2)u(pa, λa)
)

+(1 ↔ 2). (30)
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Fig. 4. Single and double emission from W



Z. Wa̧s: Gauge invariance, infrared/collinear singularities and tree level matrix element for e+e− → νeν̄eγγ 497

Here p = pd−pb = −(pc−pa+k1+k2) and q = pc−pa+k2 =
−(pd − pb + k1). Similarly one can write the contribution
Lk1,k2

e+,W for the two diagrams with emission from positron
and W , but we will omit the corresponding formulae. As
before, we separate Lk1,k2

e−,W = Lk1,k2
e−,W (k0) + Lk1,k2

e−,W (k1) into
parts, (k1) marks the contribution where only �k2 is taken
from the fermionic propagator and (k0) marks the rest.
The explicit formulae are

Lk1,k2
e−,W (k0) = (eQe)2

×BWW

(
(pc + k2 − pa)2

)
×BWW

(
(pc + k2 + k1 − pa)2

)

×
(

v̄(pb, λb)(1 − γ5)γµv(pd, λd)

× [gµν(p − q)ρ + gνρ(q − k1)µ + gµρ(k1 − p)ν ]

× (
ε�
σ1

(k1)
)ρ

× ū(pc, λc)(1 − γ5)γν �pa + m

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)

+(1 ↔ 2) (31)

and

Lk1,k2
e−,W (k1) = (eQe)2

×BWW

(
(pc + k2 − pa)2

)
×BWW

(
(pc + k2 + k1 − pa)2

)

×
(

v̄(pb, λb)(1 − γ5)γµv(pd, λd)

× [gµν(p − q)ρ + gνρ(q − k1)µ + gµρ(k1 − p)ν ]

× (
ε�
σ1

(k1)
)ρ

× ū(pc, λc)(1 − γ5)γν −�k2

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)

+(1 ↔ 2). (32)

Let us start with the second one, which can be easily
transformed (with the help of the Dirac equation) into

Lk1,k2
e−,W (k1) = (eQe)2

×BWW

(
(pc + k2 − pa)2

)
×BWW

(
(pc + k2 + k1 − pa)2

)

×
(

v̄(pb, λb)(1 − γ5)γµv(pd, λd)

× [gµν(pd − pb − pc + pa − k2)ρ + gνρ(−2k1)µ

+ gµρ(2k1 − pa)ν ]
(
ε�
σ1

(k1)
)ρ

× ū(pc, λc)(1 − γ5)γν −�k2

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)

+(1 ↔ 2). (33)

This contribution can be separated even further:

Lk1,k2
e−,W (k1) = Lk1,k2

e−,W (1̄) + Lk1,k2
e−,W (2) + Lk1,k2

e−,W (3̄), (34)

where

Lk1,k2
e−,W (1̄) = (eQe)2

×BWW

(
(pc + k2 − pa)2

)
×BWW

(
(pc + k2 + k1 − pa)2

)

×
(

v̄(pb, λb)(1 − γ5)γµv(pd, λd)

× ū(pc, λc)(1 − γ5)γµ −�k2

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)

×(pd − pb − pc + pa − k2) · ε�
σ1

(k1)

+(1 ↔ 2), (35)

and the second term

Lk1,k2
e−,W (2) = (eQe)2

×BWW

(
(pc + k2 − pa)2

)
×BWW

(
(pc + k2 + k1 − pa)2

)

×
(

v̄(pb, λb)(1 − γ5)γµv(pd, λd)

×2
[
− (

ε�
σ1

(k1)
)
ν

(k1)µ +
(
ε�
σ1

(k1)
)
µ

(k1)ν

]

× ū(pc, λc)(1 − γ5)γν −�k2

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)

+(1 ↔ 2) (36)

is gauge invariant by itself. The third one is less divergent
in the collinear configuration:

Lk1,k2
e−,W (3̄) = −(eQe)2

×BWW

(
(pc + k2 − pa)2

)
×BWW

(
(pc + k2 + k1 − pa)2

)

×
(

v̄(pb, λb)(1 − γ5) �ε�
σ1

(k1)v(pd, λd)

× ū(pc, λc)(1 − γ5)�pa
−�k2

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)

+(1 ↔ 2). (37)

Let us now turn to the other part of the amplitude and
present it in the form of a sum:

Lk1,k2
e−,W (k0) = Lk1,k2

e−,W (4̄) + Lk1,k2
e−,W (5) + Lk1,k2

e−,W (6̄), (38)

where the first term reads

Lk1,k2
e−,W (4̄) = (eQe)2

×BWW

(
(pc + k2 − pa)2

)
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×BWW

(
(pc + k2 + k1 − pa)2

)

×
(

v̄(pb, λb)(1 − γ5)γµv(pd, λd)

× ū(pc, λc)(1 − γ5)γµ �pa + m

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)

×(pd − pb − pc + pa − k2) · ε�
σ1

(k1)

+(1 ↔ 2), (39)

the second one

Lk1,k2
e−,W (5) = (eQe)2

×BWW

(
(pc + k2 − pa)2

)
×BWW

(
(pc + k2 + k1 − pa)2

)

×
(

v̄(pb, λb)(1 − γ5)γµv(pd, λd)

×2
[− (

ε�
σ1

(k1)
)
ν

((k1)µ − (pb)µ)

+
(
ε�
σ1

(k1)
)
µ

(k1)ν

]

× ū(pc, λc)(1 − γ5)γν �pa + m

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)

+(1 ↔ 2), (40)

and the third one

Lk1,k2
e−,W (6̄) = (eQe)2

×BWW

(
(pc + k2 − pa)2

)
×BWW

(
(pc + k2 + k1 − pa)2

)

×
(

v̄(pb, λb)(1 − γ5) �ε�
σ1

(k1)v(pd, λd)

×ū(pc, λc)(1 − γ5)(�k2 − �pa)

× �pa + m

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)

+(1 ↔ 2). (41)

The last two terms can be modified further and some terms
neglected. One can check that these terms contribute at
the level of me√

s
only, and that is why we will exclude them

from explicit considerations. After these simplifications, we
finally obtain, gauge invariant by itself,

Lk1,k2
e−,W (5) = (eQe)2

×BWW

(
(pc + k2 − pa)2

)
×BWW

(
(pc + k2 + k1 − pa)2

)

×
(

v̄(pb, λb)(1 − γ5)γµv(pd, λd)

×2
[
− (

ε�
σ1

(k1)
)
ν

(k1)µ +
(
ε�
σ1

(k1)
)
µ

(k1)ν

]

× ū(pc, λc)(1 − γ5)γν �pa + m

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)

+(1 ↔ 2), (42)

and now we have the term explicitly less divergent in the
collinear configuration

Lk1,k2
e−,W (6̄) = (eQe)2

×BWW

(
(pc + k2 − pa)2

)
×BWW

(
(pc + k2 + k1 − pa)2

)

×
(

v̄(pb, λb)(1 − γ5) �ε�
σ1

(k1)v(pd, λd)

× ū(pc, λc)(1 − γ5)�k2
�pa + m

−2k2pa
�ε�

σ2
(k2)u(pa, λa)

)

+(1 ↔ 2). (43)

Let us now turn to the diagrams of double emission from
the W ; see the right-hand side of Fig. 4. The corresponding
amplitude can be written as

Lk1,k2
W,W = (eQe)2

×BWW

(
(pc − pa)2

)
BWW

(
(pc + k1 − pa)2

)
×BWW

(
(pc + k1 + k2 − pa)2

)
× (

v̄(pb, λb)(1 − γ5)γµv(pd, λd)

× ū(pc, λc)(1 − γ5)γνu(pa, λa)
)

× [gσν(p − q)ρ + gνρ(q − k1)σ + gσρ(k1 − p)ν ]

× [
gσ

µ(p′ − q′)ρ′ + gσ
ρ′(q′ − k2)µ + gµρ′(k2 − p′)σ

]
×(ε�

σ1
(k1))ρ(ε�

σ2
(k2))ρ′

+(1 ↔ 2), (44)

where p = −q′ = pd − pb + k2 = −(pc − pa + k1), q =
pc − pa = −(pd − pb + k1 + k2) and p′ = pd − pb = −(pc −
pa + k1 + k2).

As usual, we will represent this expression in the form
of a sum:

Lk1,k2
W,W = Lk1,k2

W,W (1̄) + Lk1,k2
W,W (2̄) + Lk1,k2

W,W (3̄) + Lk1,k2
W,W (4̄)

+Lk1,k2
W,W (5̄) + Lk1,k2

W,W (6̄). (45)

The first term, proportional to a Born amplitude multi-
plied by a factor depending on the polarization of the two
photons, takes the form

Lk1,k2
W,W (1̄) = (eQe)2

×BWW

(
(pc − pa)2

)
BWW

(
(pc + k1 − pa)2

)
×BWW

(
(pc + k1 + k2 − pa)2

)
× (

v̄(pb, λb)(1 − γ5)γµv(pd, λd)

× ū(pc, λc)(1 − γ5)γµu(pa, λa)
)

×(p − q) · ε�
σ1

(k1) (p′ − q′) · (ε�
σ2

(k2))

+(1 ↔ 2). (46)
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Terms with a dependence on the polarization of only one
photon factorize out from the amplitude and take the form

Lk1,k2
W,W (2̄) = (eQe)2

×BWW

(
(pc − pa)2

)
BWW

(
(pc + k1 − pa)2

)
×BWW

(
(pc + k1 + k2 − pa)2

)
× (

v̄(pb, λb)(1 − γ5)γµv(pd, λd)

× ū(pc, λc)(1 − γ5)γνu(pa, λa)
)

×2
[−(ε�

σ1
(k1))ν(k1)µ + (k1)ν(ε�

σ1
(k1))µ

]
×(p′ − q′) · (ε�

σ2
(k2))

+(1 ↔ 2) (47)

and

Lk1,k2
W,W (3̄) = (eQe)2

×BWW

(
(pc − pa)2

)
BWW

(
(pc + k1 − pa)2

)
×BWW

(
(pc + k1 + k2 − pa)2

)
× (

v̄(pb, λb)(1 − γ5)γµv(pd, λd)

× ū(pc, λc)(1 − γ5)γνu(pa, λa)
)

×2
[−(ε�

σ2
(k2))ν(k2)µ + (k2)ν(ε�

σ2
(k2))µ

]
×(p − q) · ε�

σ1
(k1)

+(1 ↔ 2). (48)

The two last terms (47) and (48) are partially gauge inde-
pendent, respectively for the polarization vector of the first
and second photon. The remaining, fully gauge dependent
parts of the amplitude read

Lk1,k2
W,W (4̄) = −(eQe)2

×BWW

(
(pc − pa)2

)
BWW

(
(pc + k1 − pa)2

)
×BWW

(
(pc + k1 + k2 − pa)2

)
× (

v̄(pb, λb)(1 − γ5)�k2v(pd, λd)

× ū(pc, λc)(1 − γ5) �ε�
σ1

u(pa, λa)
)

×(p′ − q′) · (ε�
σ2

(k2))

+(1 ↔ 2) (49)

and

Lk1,k2
W,W (5̄) = (eQe)2

×BWW

(
(pc − pa)2

)
BWW

(
(pc + k1 − pa)2

)
×BWW

(
(pc + k1 + k2 − pa)2

)
× (

v̄(pb, λb)(1 − γ5) �ε�
σ2

v(pd, λd)

× ū(pc, λc)(1 − γ5)�k1u(pa, λa)
)

×(p − q) · ε�
σ1

(k1) + (1 ↔ 2). (50)

Finally

Lk1,k2
W,W (6̄) = (eQe)2

�

�

�
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Fig. 5. Four boson coupling and coupling for unphysical χ field

×BWW

(
(pc − pa)2

)
BWW

(
(pc + k1 − pa)2

)
×BWW

(
(pc + k1 + k2 − pa)2

)
× (

v̄(pb, λb)(1 − γ5)γµv(pd, λd)

× ū(pc, λc)(1 − γ5)γνu(pa, λa)
)

× [gνρ(q − k1)σ + gσρ(k1 − p)ν ] (ε�
σ1

(k1))ρ

× [
gσ

ρ′(q′ − k2)µ + gµρ′(k2 − p′)σ
]
(ε�

σ2
(k2))ρ′

+(1 ↔ 2). (51)

As the last step, let us turn to contributions from the
diagrams presented in Fig. 5. The diagram with the con-
tribution from the quartic gauge coupling reads

Lk1,k2
W 2 = (eQe)2

×BWW

(
(pc − pa)2

)
BWW

(
(pc + k2 + k1 − pa)2

)
× (

v̄(pb, λb)(1 − γ5) �ε�
σ1

v(pd, λd)ū(pc, λc)(1 − γ5)

× �ε�
σ2

u(pa, λa)

+v̄(pb, λb)(1 − γ5) �ε�
σ2

v(pd, λd)ū(pc, λc)(1 − γ5)

× �ε�
σ1

u(pa, λa)

+2v̄(pb, λb)(1 − γ5)γµv(pd, λd)

× ū(pc, λc)(1 − γ5)γµu(pa, λa)ε�
σ1

· ε�
σ2

)
. (52)

It is convenient to write it as a sum of two parts

Lk1,k2
W 2 = Lk1,k2

W 2 (1̄) + Lk1,k2
W 2 (2̄), (53)

where

Lk1,k2
W 2 (1̄) = 2(eQe)2

×BWW

(
(pc − pa)2

)
BWW

(
(pc + k2 + k1 − pa)2

)
×ε�

σ1
ε�
σ2

v̄(pb, λb)(1 − γ5)γµv(pd, λd)

×ū(pc, λc)(1 − γ5)γµu(pa, λa) (54)

and

Lk1,k2
W 2 (2̄) = (eQe)2

×BWW

(
(pc − pa)2

)
BWW

(
(pc + k2 + k1 − pa)2

)
× (

v̄(pb, λb)(1 − γ5) �ε�
σ1

v(pd, λd)

×ū(pc, λc)(1 − γ5) �ε�
σ2

u(pa, λa)

+v̄(pb, λb)(1 − γ5) �ε�
σ2

v(pd, λd)

× ū(pc, λc)(1 − γ5) �ε�
σ1

u(pa, λa)
)
. (55)
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The contribution from the diagram involving an internal
χ line reads

Lk1,k2
W,χ = (eQe)2M2

W

×BWW

(
(pc − pa)2

)
BWW

(
(pc + k2 + k1 − pa)2

)
× (

v̄(pb, λb)(1 − γ5) �ε�
σ1

(k1)v(pd, λd)

× ū(pc, λc)(1 − γ5) �ε�
σ2

(k2)u(pa, λa)
)

+(1 ↔ 2). (56)

This closes the list of all diagrams entering the com-
plete spin amplitude for the process e+e− → νeν̄eγγ. The
contributing terms were obtained from the Feynman rules
and were grouped on the basis of rather straightforward
rules: gauge symmetry and the nature of the singularities
in the infrared and collinear limits (phase space integration
was not necessary).

The complete gauge invariant part of the spin amplitude
of W exchange can be written now as

MW = MA
W + MB

W , (57)

where MA
W (technically identical to the amplitude of Z

exchange) was given by formula (29) and the new part,
specific to the W bosonic interactions, reads

MB
W = Lk1,k2

e+,W (1̄) + Lk1,k2
e+,W (2) + Lk1,k2

e+,W (3̄) + Lk1,k2
e+,W (4̄)

+Lk1,k2
e+,W (5) + Lk1,k2

e+,W (6̄)

+Lk1,k2
e−,W (1̄) + Lk1,k2

e−,W (2) + Lk1,k2
e−,W (3̄) + Lk1,k2

e−,W (4̄)

+Lk1,k2
e−,W (5) + Lk1,k2

e−,W (6̄)

+Lk1,k2
W,W (1̄) + Lk1,k2

W,W (2̄) + Lk1,k2
W,W (3̄) + Lk1,k2

W,W (4̄)

+Lk1,k2
W,W (5̄) + Lk1,k2

W,W (6̄)

+Lk1,k2
W 2 (1̄) + Lk1,k2

W 2 (2̄) + Lk1,k2
W,χ . (58)

We can now write the complete spin amplitude of the
W interactions as a sum of gauge invariant parts:

MW = M1 + M2 + M3 + M4 + M5 + M6 + M7

+M8 + M9 + M10 + M11, (59)

where

M1 = Lk1,k2
e− (1),

M2 = Lk1,k2
e− (2),

M3 = Lk1,k2
e+ (1),

M4 = Lk1,k2
e+ (2),

M5 = Lk1,k2
e−,e+(1),

M6 = Lk1,k2
e− (4̄) + Lk1,k2

e+ (4̄) + Lk1,k2
e−,e+(2̄) + Lk1,k2

e−,W (1̄)

+Lk1,k2
e+,W (1̄),

M7 = Lk1,k2
e− (3̄) + Lk1,k2

e+ (3̄) + Lk1,k2
e−,e+(3̄) + Lk1,k2

e−,W (4̄)

+Lk1,k2
e+,W (4̄) + Lk1,k2

W,W (1̄) + Lk1,k2
W 2 (1̄),

M8 = Lk1,k2
e−,W (2),

M9 = Lk1,k2
e+,W (2),

M10 = Lk1,k2
e−,W (5) + Lk1,k2

e+,W (5) + Lk1,k2
W,W (2̄) + Lk1,k2

W,W (3̄),

M11 = Lk1,k2
e−,W (3̄) + Lk1,k2

e+,W (3̄) + Lk1,k2
e−,W (6̄)

+Lk1,k2
e+,W (6̄) + Lk1,k2

W,W (4̄) + Lk1,k2
W,W (5̄) + Lk1,k2

W,W (6̄)

+Lk1,k2
W 2 (2̄) + Lk1,k2

W,χ . (60)

The matching of the La
b (n̄) terms into gauge invariant

parts Mi of the amplitude is straightforward and based on
the type of singularities present/absent in the particular
group. Each of the contributions M1–M11 listed below
can be given some physical interpretation. In some cases,
the appearance of such parts may seem rather unexpected.
In brackets we provide symbols such as (IA); they denote
the name of the variables used in KKMC [7] Monte Carlo,
as keys for the parts of the amplitude as listed here.
(1) M1 (IA), the contribution of double emission from an
electron line (infrared non-singular part) with straightfor-
ward gauge cancellation within the terms originating from
diagram of two photons attached to the same incoming
electron line.
(2) M2 (IV2), the contribution of double emission from an
electron line (infrared non-singular part) with non-straight-
forward gauge cancellation within the terms originating
fromdiagramof two photons attached to the same incoming
electron line. Part of the diagram’s contribution had to
be subtracted (more precisely, expressed without the k1k2
product in the electron propagator). This subtraction term
is recuperated in M6 and M7.
(3) M3 (IA), M4 (IV1), the same as the previous two cases
but for emission from a positron line.
(4) M5 (I8), the infrared non-singular contributions of
single emission from an electron and another infrared non-
singular part of single emission from a positron line. This
contribution is gauge invariant by construction.
(5) M6 (I9X), (I9Y), (I9Z), (I9T), part of the amplitude
with an infrared factor for one photon, and an infrared
non-singular gauge invariant contribution for the second
one. For the diagrams with W exchange, the contribution
from the diagram with photon emission from W needs to
be added. For the gauge cancellation to hold, the relation
between t-channel transfers in the W propagators and mo-
menta multiplying the photon polarization vector needs
to be fulfilled. Nonetheless, a certain freedom of choice is
left. This freedom was useful in the construction of the
extrapolation procedures10.
(6) M7 (IVI), the part of the amplitude with infrared
factors for both photons. For the diagrams with the W ex-
change contribution from diagrams with single and double
10 An identical condition, also originating directly from Ward
identities, needs to be preserved in M10 and a similar
one in M11.
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emission of photons from W needs to be taken, and also
the part of the diagram with a quartic gauge coupling was
needed here.
(7) M8 (I71), (I72), the part of the amplitude with an in-
frared non-singular contribution of emission from an elec-
tron for one photon and for another one part of emission
from W which is self gauge-conserving.
(8) M9 (I71), (I72), the same as the previous case but for
emission from positron.
(9) M10 (I9s1), (I9s2), the part of the amplitude with an
infrared factor for one photon and part of the emission
from W , which is self gauge-conserving for another one.
(10) M11 (I9), (I9B), (I10), all the remaining parts; they
turn out to be free of singularities both in collinear and
soft limits.

We note the following.
(1) Let us comment that in the limit MW → ∞ all con-
tributions from M6 to M11 disappear. In this limit am-
plitudes for s-channel Z exchange and t-channel W nearly
coincide. The only remaining difference is the coupling con-
stants and the hard interaction part of the amplitude given
respectively by (25) and (28). This is an extension of the
similar observation of [14], instrumental in the construc-
tion of extrapolation procedures of [10] to the case beyond
real photon interactions with fermions only.
(2) Let us point out that in many places we have used a
separation of the WWγ vertex into three parts:
(i) the one with the gµν tensor along a line connecting the
fermion lines;
(ii) the part internally preserving gauge symmetry, and
(iii) the remaining part which we often could reduce sig-
nificantly with the help of the Dirac equation (because of
the fermion lines connected with the WWγ vertex by the
W propagator).
(3) Finally let us note that the above separation into gauge
invariant parts can be continued even further. For example,
it is rather easy to separate M6 into four parts. For each,
the emissions of individual photons are attributed either
to an electron or a positron line.

We have not exploited to the end the properties of M11.
It was not interesting from the point of view of our main
purpose, which is implementation of the matrix element
to the environment of coherent exlusive exponentiation.
Also in case of M11, and contrary to all the other parts
from M1 to M10, similarities with first-order results could
not be seen. This is rather natural, as for example quartic
gauge couplings are absent in first order. In this case, hints
of a pattern for constructing amplitudes of even higher
order using iteration techniques could not be found. To
this end, a discussion of the amplitudes of triple photon
emission would be needed. If conclusive, it would point
to solutions helpful beyond next-to-leading-log approxi-
mation, and thus beyond the immediate interest of the
present paper.

Gauge invariance was not the only criterion which was
used to split amplitude into parts. Equally important was
that the twomain sources of the radiation (incomingbeams)
form the unambiguous frame. In this frame photons’ ener-
gies and the angles between photons and fermions could be

defined11. That is why there was no need to make any ref-
erence to the regulators. Singular terms could be localized
already at the amplitude level and in a fully differential
manner, with no need to partially integrate phase space.
The expansion in the contact interaction for the W propa-
gator allows the gauge cancellation effects of emission from
t-channel W to be placed within the frame of ISR radi-
ation. Also, the relation between amplitude for double-
and single-photon emission had to be exploited to remove
ambiguities. Once these assumptions and properties were
exploited, the solution seemed to be unique, up to a possible
grouping or further splitting of the obtained parts. Con-
firmation of whether this is an accidental property which
holds for this particular case (and up to a second order
only) may require calculation of at least third order and
for other processes as well.

4 Some points on extrapolation

Let us summarize here some specific issues related to the
extrapolation procedure of a CEEX scheme described only
for purely s-channel hard process in detail in [8]. One of the
important properties of the perturbation expansion, rear-
ranged to improve convergence into exclusive exponentia-
tion, is that parts of the amplitudes need tobe appropriately
shifted between the orders of expansion. We will concen-
trate our attention on issues related to real bremsstrahlung
only. Those parts of the higher-order terms (directly cal-
culated in a standard way), which are already included at
lower level of the CEEX perturbation expansion, need to
be localized and subtracted from Feynman diagram calcu-
lation in a clear way. Only the remaining residual parts,
called β0, β1, β2 etc. [2], will be the higher-order terms.
The use of β functions is unambiguous if a sufficiently high
order of perturbative calculation is available. However, this
is not always the case; practical solutions for exponentia-
tion require the definition of methods to calculate matrix
elements for the kinematical configuration with a large
number of real photons, when using results of the first (or
second) order of the perturbation expansion only.

There are several rules which the extrapolation proce-
dure must fulfill. Already the lowest order must include
all terms with the highest power of the infrared singu-
larity and all kinematical configurations for an arbitrary
number of real photons in a fully exclusive manner. Then
the first order provides all terms with the next to highest
power of the infrared singularity, etc. Let us stress that
the reduction/extrapolation procedure of exponentiation
offers some freedom of choice. This freedom can be used to
further improve the convergence of the perturbation expan-
sion. The best guidance is of course comparison with the
result of an even higher order of expansion, to minimize its

11 The definition of this frame is process independent and
helps to fix the gauge for amplitudes of single and double
photon emission in a consistent manner, also in cases when
extrapolation procedures are needed. Note that this point would
require more elaboration if we were interested in the properties
of the amplitudes for final-state radiation.
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contribution. If such results are not available, higher-order
leading-log results (for partially inclusive quantities) can
be used instead. Finally, let us stress that if a sufficiently
high order of the perturbation expansion is available, the
dependence on the particular choice of extrapolation drops
out and a unique result, identical to the one of the direct
perturbation expansion without any reordering is obtained.
Unfortunately this is not expected to be the case in the
foreseeable future.

In the case of diagrams with Z exchange, the choice of
the extrapolation procedure is straightforward. Inspection
of first-order (see (2)) and second-order (see (27)) ampli-
tudes points to the following solution: the terms M1 to M5
of (27) should contribute to β2, whereas the last two terms
M6 and M7 can be directly obtained from the lower order.
The M6 can be obtained from β1 by multiplication by the
soft photon factor for the other photon. The β1 can be iden-
tified as this part of M0 (see (2)), which is proportional to
�k1. The M7 can be obtained from the lowest order Born
spin amplitude β0 of Z exchange by multiplication by two
soft photon factors, for each of the bremsstrahlung photons,
exactly as it should be in an exponentiation prescription.
The factorization properties can be easily seen if a rather
trivial manipulation on the Dirac algebra is performed.

In the case of diagrams with W exchange, the choice
of the extrapolation procedure is more complex, because
of the dependence on the photon momenta of the transfers
in the W propagators. That is also the reason why triple
and quartic gauge couplings appear. If the kinematical
configurations of more than two explicit hard photons are
taken, then the transfers calculated for the W propagators
can be defined in several ways. Our choice, used at present
in KKMC [7], is inspired by leading-log considerations. For
lowest order (β0) and if there are no additional photons,
the transfer, t0, can be calculated either as
(i) t0 = (pc − pa)2 or
(ii) t0 = (pd − pb)2.

If there is a photon collinear to pb the first choice is
closer to the transfer dominating the higher-order (i.e. sin-
gle bremsstrahlung) spin amplitude. In general the choice
(i) is thus more favored if the total four-momentum car-
ried out by the sum of all photons is pointing rather into
the direction of pb than pa. Otherwise the second choice is
better. In the case of single (or double) photon emission
the choice of how the transfers are calculated is basically
the same. The only difference is that the photons explicitly
included in the particular contribution to β1 or β2 should
not contribute to the sum of the photons mentioned above.
The choice of the pair (pa, pc or pb, pd) used in the calcula-
tion for the transfers must be taken also in the calculation
of the algebraic expressions originating from a direct W
interaction with photons for gauge invariance to hold.

5 Summary

The purpose of the present paper was first of all practi-
cal: to close the gap in the documentation of the Monte
Carlo program KKMC based on exponentiation [7] and
used in the interpretation of the LEP data for neutrino

pair production. We started with the presentation of well-
known, tree level spin amplitudes for the e+e− → νeν̄eγ
and e+e− → νeν̄eγγ processes. To organize these terms we
used an expansion with respect to the contact interaction
for the W exchange. We have shown how the properties of
gauge invariance separate the results of the spin-amplitude
calculations for a process with a t-channel contribution into
amplitudes of s-channel exchange, and the rest, which is
free of most of the singularities. We also were able to iden-
tify further gauge invariant parts of the amplitudes and
order them accordingly to the level of a singularity. In par-
ticular, the parts proportional to the inverse of the photon
energies (i.e. corresponding to an infrared singularity), the
remaining parts proportional to the inverse of the product
of fermion and photon direction vectors (i.e. of the type
of collinear singularity), as well as the residual finite parts
could be identified in a rather natural way. By comparison
with amplitudes for the diagrams involving s-channel Z
exchange we were able to include the singular parts into
the exponentiated factors and the rest could be treated up
to the fixed order12. We could observe a certain pattern
of universality, which may be of broader interest. General
principles defining semi-automatic rules for gauge separa-
tion are listed in the first and last paragraphs of Sect. 3;
see also footnote 10. The solution of spin amplitudes used
for the neutrino mode of KKMC can be understood as a
prototype, where a fully exclusive calculation for the pro-
duction of two fermion final states through the s-channel
only is the basis for a more complex one and the process
where the t-channel exchanges contribute as well.

The question of how general the separation methods
presented here are obviously is of interest. Separation into
parts proportional to the different powers of the photon
momenta is at the heart of the exponentiation scheme and
is obviously not new. On the other hand, separation of spin
amplitudes into finer parts seems to be a novel result. Sim-
ilar separation properties, for the final-state radiation in
decays of resonances, were helpful to develop the PHOTOS
generator [16, 17] into a multiple photon version [15] and
into a version with a better emission from theW decays [13].
However, in that case the additional complexity has to be
addressed. It originates from the necessity to relate the
four-momenta of the outgoing fermions for processes with
a distinct number of photons, a difficulty obviously absent
for initial-state radiation. On the other hand, in decays,
where the precision of the PHOTOS algorithm was studied
(W ’s and Z’s) the internal complexity of fixed-order ampli-
tudes is significantly smaller than in electron neutrino pair
production. The recent paper of [18] is organized mainly
around the numerical results of the PHOTOS tests. A more
rigorous discussion of the principles of the multiple photon

12 Let us stress that some parts of the results presented here
are expected from the properties of U(1) gauge symmetry and
the corresponding Ward identities. They have been known al-
ready for a long time, and similar ones are known in the context
of QCD as well, but so far were discussed in the context ei-
ther of inclusive or semi-inclusive quantities or, if for fully
differential distributions of multiple particle final states, then
with simplifications.
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algorithm of PHOTOS is still missing. However, because
the PHOTOS algorithm is of the parton shower type, the
use of the properties of the spin amplitudes in its validation
provide a hint that some of the methods presented here may
find a way into a broader class of applications. They point
toward a possible hierarchical organization of spin ampli-
tudes with consecutive levels of simplifications, which can
be restored back. At present, this highly speculative point
cannot be supported by any theoretically solid argument,
but only by examples. However, from the inspection of the
presented QED calculation, the conjecture that the sepa-
ration properties are more general than for the emissions
from incoming and outgoing fermions and intermediate
W ’s seems to be natural (and it is also useful). Finally, let
us point out similar observation as ours [19]: the case of
the virtual, single loop corrections for the e+e− → νeν̄e

and e+e− → νeν̄eH processes.
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